
Package: constructive (via r-universe)
September 19, 2024

Title Display Idiomatic Code to Construct Most R Objects

Version 1.0.1.9000

Description Prints code that can be used to recreate R objects. In a
sense it is similar to 'base::dput()' or 'base::deparse()' but
'constructive' strives to use idiomatic constructors.

License MIT + file LICENSE

URL https://github.com/cynkra/constructive,

https://cynkra.github.io/constructive/

BugReports https://github.com/cynkra/constructive/issues

Imports cli, diffobj, methods, rlang (>= 1.0.0), waldo

Suggests bit64, blob, clipr, data.table, DiagrammeR, DiagrammeRsvg,
dm, dplyr, forcats, ggplot2, knitr, lubridate, pixarfilms,
prettycode, R6, reprex, rmarkdown, roxygen2, rstudioapi,
scales, sf, testthat (>= 3.0.0), tibble, tidyselect, vctrs,
withr, xts, zoo

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2.9000

Repository https://cynkra.r-universe.dev

RemoteUrl https://github.com/cynkra/constructive

RemoteRef HEAD

RemoteSha d31558effb00f9c69f5c8ea1a73499a74125a447

Contents
.cstr_apply . 3
.cstr_combine_errors . 5

1

https://github.com/cynkra/constructive
https://cynkra.github.io/constructive/
https://github.com/cynkra/constructive/issues

2 Contents

.cstr_construct . 6

.cstr_options . 7

.cstr_pipe . 8

.cstr_repair_attributes . 8

.cstr_wrap . 9

.env . 10

.xptr . 10
compare_options . 11
construct . 12
constructive-global_options . 17
construct_clip . 18
construct_diff . 20
construct_dput . 21
construct_dump . 24
construct_issues . 24
construct_reprex . 25
construct_signature . 26
deparse_call . 26
extend-constructive . 28
opts_array . 28
opts_AsIs . 29
opts_atomic . 30
opts_blob . 31
opts_character . 32
opts_classGeneratorFunction . 33
opts_classPrototypeDef . 33
opts_classRepresentation . 34
opts_complex . 34
opts_constructive_options . 35
opts_data.frame . 36
opts_data.table . 37
opts_Date . 38
opts_dm . 39
opts_dots . 39
opts_double . 40
opts_environment . 41
opts_externalptr . 43
opts_factor . 43
opts_formula . 44
opts_function . 45
opts_ggplot . 46
opts_grouped_df . 46
opts_hexmode . 47
opts_integer . 48
opts_integer64 . 48
opts_language . 49
opts_Layer . 50
opts_list . 50

.cstr_apply 3

opts_logical . 51
opts_matrix . 52
opts_mts . 53
opts_numeric_version . 54
opts_octmode . 54
opts_ordered . 55
opts_package_version . 56
opts_pairlist . 56
opts_POSIXct . 57
opts_POSIXlt . 58
opts_quosure . 58
opts_quosures . 59
opts_R6 . 60
opts_R6ClassGenerator . 61
opts_raw . 61
opts_rowwise_df . 62
opts_R_system_version . 63
opts_S4 . 64
opts_tbl_df . 64
opts_ts . 65
opts_vctrs_list_of . 66
opts_weakref . 66
opts_xts . 67
opts_yearmon . 67
opts_yearqtr . 68
opts_zoo . 69
opts_zooreg . 69
other-opts . 70
templates . 72

Index 74

.cstr_apply .cstr_apply

Description

Exported for custom constructor design. If recurse is TRUE (default), we recurse to construct args
and insert their construction code in a fun(...) call returned as a character vector. If args already
contains code rather than object to construct one should set recurse to FALSE.

Usage

.cstr_apply(
args,
fun = "list",
...,
trailing_comma = FALSE,

4 .cstr_apply

recurse = TRUE,
implicit_names = FALSE,
new_line = TRUE,
one_liner = FALSE,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE

)

Arguments

args A list of arguments to construct recursively, or code if recurse = FALSE. If ele-
ments are named, the arguments will be named in the generated code.

fun The function name to use to build code of the form "fun(...)"

... Options passed recursively to the further methods

trailing_comma Boolean. Whether to leave a trailing comma after the last argument if the code
is multiline, some constructors allow it (e.g. tibble::tibble()) and it makes
for nicer diffs in version control.

recurse Boolean. Whether to recursively generate the code to construct args. If FALSE
arguments are expected to contain code.

implicit_names When data is provided, compress calls of the form f(a = a) to f(a)

new_line Boolean. Forwarded to wrap() to add a line between "fun(" and ")", forced to
FALSE if one_liner is TRUE

one_liner Boolean. Whether to return a one line call.
unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct strings and variable names. This makes sure that homo-
glyphs (different spaces and other identically displayed unicode characters) are
printed differently, and avoid possible unfortunate copy and paste auto conver-
sion issues. "latin" is more lax and uses all latin characters (code point < 256).
"character" shows all characters, but not emojis. Finally "unicode" displays all
characters and emojis, which is what dput() does.

escape Boolean. Whether to escape double quotes and backslashes. If FALSE we use
single quotes to surround strings (including variable and element names) con-
taining double quotes, and raw strings for strings that contain backslashes and/or
a combination of single and double quotes. Depending on unicode_representation
escape = FALSE cannot be applied on all strings.

Value

A character vector of code

Examples

a <- 1
.cstr_apply(list(a=a), "foo")
.cstr_apply(list(a=a), "foo", data = list(a=1))
.cstr_apply(list(a=a), "foo", data = list(a=1), implicit_names = TRUE)

.cstr_combine_errors 5

.cstr_apply(list(b=a), "foo", data = list(a=1), implicit_names = TRUE)

.cstr_apply(list(a="c(1,2)"), "foo")

.cstr_apply(list(a="c(1,2)"), "foo", recurse = FALSE)

.cstr_combine_errors Combine errors

Description

Exported for custom constructor design. This function allows combining independent checks so
information is given about all failing checks rather than the first one. All parameters except ... are
forwarded to rlang::abort()

Usage

.cstr_combine_errors(
...,
class = NULL,
call,
header = NULL,
body = NULL,
footer = NULL,
trace = NULL,
parent = NULL,
use_cli_format = NULL,
.internal = FALSE,
.file = NULL,
.frame = parent.frame(),
.trace_bottom = NULL

)

Arguments

... check expressions

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

header An optional header to precede the errors

body, footer Additional bullets.

6 .cstr_construct

trace A trace object created by trace_back().

parent Supply parent when you rethrow an error from a condition handler (e.g. with
try_fetch()).

• If parent is a condition object, a chained error is created, which is useful
when you want to enhance an error with more details, while still retaining
the original information.

• If parent is NA, it indicates an unchained rethrow, which is useful when you
want to take ownership over an error and rethrow it with a custom message
that better fits the surrounding context.
Technically, supplying NA lets abort() know it is called from a condition
handler. This helps it create simpler backtraces where the condition han-
dling context is hidden by default.

For more information about error calls, see Including contextual information
with error chains.

use_cli_format Whether to format message lazily using cli if available. This results in prettier
and more accurate formatting of messages. See local_use_cli() to set this
condition field by default in your package namespace.
If set to TRUE, message should be a character vector of individual and unformat-
ted lines. Any newline character "\\n" already present in message is reformat-
ted by cli’s paragraph formatter. See Formatting messages with cli.

.internal If TRUE, a footer bullet is added to message to let the user know that the error is
internal and that they should report it to the package authors. This argument is
incompatible with footer.

.file A connection or a string specifying where to print the message. The default
depends on the context, see the stdout vs stderr section.

.frame The throwing context. Used as default for .trace_bottom, and to determine the
internal package to mention in internal errors when .internal is TRUE.

.trace_bottom Used in the display of simplified backtraces as the last relevant call frame to
show. This way, the irrelevant parts of backtraces corresponding to condition
handling (tryCatch(), try_fetch(), abort(), etc.) are hidden by default.
Defaults to call if it is an environment, or .frame otherwise. Without effect if
trace is supplied.

Value

Returns NULL invisibly, called for side effects.

.cstr_construct Generic for object code generation

Description

Exported for custom constructor design. .cstr_construct() is basically a naked construct(),
without the checks, the style, the object post processing etc...

https://cli.r-lib.org/

.cstr_options 7

Usage

.cstr_construct(x, ..., data = NULL, classes = NULL)

Arguments

x An object, for construct_multi() a named list or an environment.

... Constructive options built with the opts_*() family of functions. See the "Con-
structive options" section below.

data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

classes A character vector of classes for which to use idiomatic constructors when avail-
able, we can provide a package instead of all its classes, in the "{pkg}" form,
and we can use a minus sign (inside the quotes) to exclude rather than include.
By default we use idiomatic constructors whenever possible. The special values
"*none*" and "*base*" can be used to restrict the idiomatic construction to the
objects. See construct_dput() and construct_base() for wrappers around
this feature.

Value

A character vector

.cstr_options Create constructive options

Description

Exported for custom constructor design.

Usage

.cstr_options(class, ...)

Arguments

class A string. An S3 class.

... Options to set

Value

An object of class c(paste0("constructive_options_", class), "constructive_options")

8 .cstr_repair_attributes

.cstr_pipe Insert a pipe between two calls

Description

Exported for custom constructor design.

Usage

.cstr_pipe(x, y, ..., pipe = NULL, one_liner = FALSE, indent = TRUE)

Arguments

x A character vector. The code for the left hand side call.

y A character vector. The code for the right hand side call.

... Implemented to collect unused arguments forwarded by the dots of the caller
environment.

pipe A string. The pipe to use, "plus" is useful for ggplot code.

one_liner A boolean. Whether to paste x, the pipe and y together

indent A boolean. Whether to indent y on a same line (provided that x and y are strings
and one liners themselves)

Value

A character vector

Examples

.cstr_pipe("iris", "head(2)", pipe = "magrittr", one_liner = FALSE)

.cstr_pipe("iris", "head(2)", pipe = "magrittr", one_liner = TRUE)

.cstr_repair_attributes

Repair attributes after idiomatic construction

Description

Exported for custom constructor design. In the general case an object might have more attributes
than given by the idiomatic construction. .cstr_repair_attributes() sets some of those at-
tributes and ignores others.

.cstr_wrap 9

Usage

.cstr_repair_attributes(
x,
code,
...,
ignore = NULL,
idiomatic_class = NULL,
remove = NULL,
flag_s4 = TRUE,
repair_names = FALSE

)

Arguments

x The object to construct

code The code constructing the object before attribute repair

... Forwarded to .construct_apply() when relevant

ignore The attributes that shouldn’t be repaired, i.e. we expect them to be set by the
constructor already in code

idiomatic_class

The class of the objects that the constructor produces, if x is of class idiomatic_class
there is no need to repair the class.

remove Attributes that should be removed, should rarely be useful.

flag_s4 Boolean. Whether to use asS4() on the code of S4 objects, set to FALSE when
a constructor that produces S4 objects was used.

repair_names Boolean. Whether to repair the names attribute. Generally it is generated by the
constructor but it is needed for some corner cases

Value

A character vector

.cstr_wrap Wrap argument code in function call

Description

Exported for custom constructor design. Generally called through .cstr_apply().

Usage

.cstr_wrap(args, fun, new_line = FALSE)

10 .xptr

Arguments

args A character vector containing the code of arguments.

fun A string. The name of the function to use in the function call. Use fun = "" to
wrap in parentheses.

new_line Boolean. Whether to insert a new line between "fun(" and the closing ")".

Value

A character vector.

.env Fetch environment from memory address

Description

This is designed to be used in constructed output. The parents and ... arguments are not processed
and only used to display additional information. If used on an improper memory address it will
either fail (most likely) or the output will be erratic.

Usage

.env(address, parents = NULL, ...)

Arguments

address Memory address of the environment

parents, ... ignored

Value

The environment that the memory address points to.

.xptr Build a pointer from a memory address

Description

Base R doesn’t provide utilities to build or manipulate external pointers (objects of type "exter-
nalptr"), so we provide our own. Objects defined with .xptr() are not stable across sessions,

Usage

.xptr(address)

compare_options 11

Arguments

address Memory address

Value

The external pointer (type "externalptr") that the memory address points to.

compare_options Options for waldo::compare

Description

Builds options that will be passed to waldo::compare() down the line.

Usage

compare_options(
ignore_srcref = TRUE,
ignore_attr = FALSE,
ignore_function_env = FALSE,
ignore_formula_env = FALSE

)

Arguments

ignore_srcref Ignore differences in function srcrefs? TRUE by default since the srcref does
not change the behaviour of a function, only its printed representation.

ignore_attr Ignore differences in specified attributes? Supply a character vector to ignore
differences in named attributes. By default the "waldo_opts" attribute is listed
in ignore_attr so that changes to it are not reported; if you customize ignore_attr,
you will probably want to do this yourself.
For backward compatibility with all.equal(), you can also use TRUE, to all
ignore differences in all attributes. This is not generally recommended as it is a
blunt tool that will ignore many important functional differences.

ignore_function_env, ignore_formula_env
Ignore the environments of functions and formulas, respectively? These are
provided primarily for backward compatibility with all.equal() which always
ignores these environments.

Value

A list

12 construct

construct Build code to recreate an object

Description

• construct() builds the code to reproduce one object,

• construct_multi() builds the code to reproduce objects stored in a named list or environ-
ment.

Usage

construct(
x,
...,
data = NULL,
pipe = NULL,
check = NULL,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE,
pedantic_encoding = FALSE,
compare = compare_options(),
one_liner = FALSE,
template = getOption("constructive_opts_template"),
classes = NULL

)

construct_multi(
x,
...,
data = NULL,
pipe = NULL,
check = NULL,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE,
pedantic_encoding = FALSE,
compare = compare_options(),
one_liner = FALSE,
template = getOption("constructive_opts_template"),
classes = NULL,
include_dotted = TRUE

)

Arguments

x An object, for construct_multi() a named list or an environment.

... Constructive options built with the opts_*() family of functions. See the "Con-
structive options" section below.

construct 13

data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

pipe Which pipe to use, either "base" or "magrittr". Defaults to "base" for R >=
4.2, otherwise to "magrittr".

check Boolean. Whether to check if the created code reproduces the object using
waldo::compare().

unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct strings and variable names. This makes sure that homo-
glyphs (different spaces and other identically displayed unicode characters) are
printed differently, and avoid possible unfortunate copy and paste auto conver-
sion issues. "latin" is more lax and uses all latin characters (code point < 256).
"character" shows all characters, but not emojis. Finally "unicode" displays all
characters and emojis, which is what dput() does.

escape Boolean. Whether to escape double quotes and backslashes. If FALSE we use
single quotes to surround strings (including variable and element names) con-
taining double quotes, and raw strings for strings that contain backslashes and/or
a combination of single and double quotes. Depending on unicode_representation
escape = FALSE cannot be applied on all strings.

pedantic_encoding

Boolean. Whether to mark strings with the "unknown" encoding rather than an
explicit native encoding ("UTF-8" or "latin1") when it’s necessary to reproduce
the binary representation exactly. This detail is normally of very little signifi-
cance. The reason why we’re not pedantic by default is that the constructed code
might be different in the console and in snapshot tests and reprexes due to the
latter rounding some angles, and it would be confusing for users.

compare Parameters passed to waldo::compare(), built with compare_options().

one_liner Boolean. Whether to collapse the output to a single line of code.

template A list of constructive options built with opts_*() functions, they will be over-
riden by Use it to set a default behavior for {constructive}.

classes A character vector of classes for which to use idiomatic constructors when avail-
able, we can provide a package instead of all its classes, in the "{pkg}" form,
and we can use a minus sign (inside the quotes) to exclude rather than include.
By default we use idiomatic constructors whenever possible. The special values
"*none*" and "*base*" can be used to restrict the idiomatic construction to the
objects. See construct_dput() and construct_base() for wrappers around
this feature.

include_dotted Whether to include names starting with dots, this includes .Random.seed in
the global environment and objects like .Class and .Generic in the execution
environments of S3 methods.

Details

construct_multi() recognizes promises (also called lazy bindings), this means that for instance

14 construct

construct_multi(environment()) can be called when debugging a function and will construct
unevaluated arguments using delayedAssign().

Value

An object of class ’constructive’.

Constructive options

Constructive options provide a way to customize the output of ‘construct()‘. We can provide calls
to ‘opts_*()‘ functions to the ‘...‘ argument. Each of these functions targets a specific type or class
and is documented on its own page.

• opts_array(constructor = c("array", "next"), ...)

• opts_AsIs(constructor = c("I", "next"), ...)

• opts_atomic(..., trim = NULL, fill = c("default", "rlang", "+", "...", "none"), compress
= TRUE)

• opts_bibentry(constructor = c("bibentry", "next"), ...)

• opts_blob(constructor = c("blob", "next"), ...)

• opts_character(constructor = c("default"), ..., trim = NULL, fill = c("default",
"rlang", "+", "...", "none"), compress = TRUE, unicode_representation = c("ascii",
"latin", "character", "unicode"), escape = FALSE)

• opts_citationFooter(constructor = c("citFooter", "next"), ...)

• opts_citationHeader(constructor = c("citHeader", "next"), ...)

• opts_classGeneratorFunction(constructor = c("setClass"), ...)

• opts_classPrototypeDef(constructor = c("prototype"), ...)

• opts_classRepresentation(constructor = c("getClassDef"), ...)

• opts_complex(constructor = c("default"), ..., trim = NULL, fill = c("default", "rlang",
"+", "...", "none"), compress = TRUE)

• opts_constructive_options(constructor = c("opts", "next"), ...)

• opts_CoordCartesian(constructor = c("coord_cartesian", "next", "environment"),
...)

• opts_CoordFixed(constructor = c("coord_fixed", "next", "environment"), ...)

• opts_CoordFlip(constructor = c("coord_flip", "next", "environment"), ...)

• opts_CoordMap(constructor = c("coord_map", "next", "environment"), ...)

• opts_CoordMunch(constructor = c("coord_munch", "next", "environment"), ...)

• opts_CoordPolar(constructor = c("coord_polar", "next", "environment"), ...)

• opts_CoordQuickmap(constructor = c("coord_quickmap", "next", "environment"), ...)

• opts_CoordSf(constructor = c("coord_sf", "next", "environment"), ...)

• opts_CoordTrans(constructor = c("coord_trans", "next", "environment"), ...)

• opts_data.frame(constructor = c("data.frame", "read.table", "next", "list"), ...,
recycle = TRUE)

construct 15

• opts_data.table(constructor = c("data.table", "next", "list"), ..., selfref = FALSE,
recycle = TRUE)

• opts_Date(constructor = c("as.Date", "as_date", "date", "new_date", "as.Date.numeric",
"as_date.numeric", "next", "double"), ..., origin = "1970-01-01")

• opts_difftime(constructor = c("as.difftime", "next"), ...)

• opts_dm(constructor = c("dm", "next", "list"), ...)

• opts_dots(constructor = c("default"), ...)

• opts_double(constructor = c("default"), ..., trim = NULL, fill = c("default", "rlang",
"+", "...", "none"), compress = TRUE)

• opts_element_blank(constructor = c("element_blank", "next", "list"), ...)

• opts_element_grob(constructor = c("element_grob", "next", "list"), ...)

• opts_element_line(constructor = c("element_line", "next", "list"), ...)

• opts_element_rect(constructor = c("element_rect", "next", "list"), ...)

• opts_element_render(constructor = c("element_render", "next", "list"), ...)

• opts_element_text(constructor = c("element_text", "next", "list"), ...)

• opts_environment(constructor = c(".env", "list2env", "as.environment", "new.env",
"topenv", "new_environment", "predefine"), ..., recurse = FALSE)

• opts_error(constructor = c("errorCondition", "next"), ...)

• opts_expression(constructor = c("default"), ...)

• opts_externalptr(constructor = c("default"), ...)

• opts_FacetWrap(constructor = c("facet_wrap", "ggproto", "next", "environment"),
...)

• opts_factor(constructor = c("factor", "as_factor", "new_factor", "next", "integer"),
...)

• opts_formula(constructor = c("default", "formula", "as.formula", "new_formula",
"next"), ..., environment = TRUE)

• opts_function(constructor = c("function", "as.function", "new_function"), ...,
environment = TRUE, srcref = FALSE, trim = NULL)

• opts_ggplot(constructor = c("ggplot", "next", "list"), ...)

• opts_ggproto(constructor = c("default", "next", "environment"), ...)

• opts_grouped_df(constructor = c("default", "next", "list"), ...)

• opts_hexmode(constructor = c("as.hexmode", "next"), ..., integer = FALSE)

• opts_integer(constructor = c("default"), ..., trim = NULL, fill = c("default", "rlang",
"+", "...", "none"), compress = TRUE)

• opts_integer64(constructor = c("as.integer64", "next", "double"), ...)

• opts_labels(constructor = c("labs", "next", "list"), ...)

• opts_language(constructor = c("default"), ...)

• opts_Layer(constructor = c("default", "layer", "next", "environment"), ...)

• opts_list(constructor = c("list", "list2"), ..., trim = NULL, fill = c("vector",
"new_list", "+", "...", "none"))

16 construct

• opts_logical(constructor = c("default"), ..., trim = NULL, fill = c("default", "rlang",
"+", "...", "none"), compress = TRUE)

• opts_margin(constructor = c("margin", "next", "double"), ...)

• opts_matrix(constructor = c("matrix", "array", "next"), ...)

• opts_mts(constructor = c("ts", "next", "atomic"), ...)

• opts_noquote(constructor = c("noquote", "next"), ...)

• opts_NULL(constructor = "NULL", ...)

• opts_numeric_version(constructor = c("numeric_version", "next", "list"), ...)

• opts_octmode(constructor = c("as.octmode", "next"), ..., integer = FALSE)

• opts_ordered(constructor = c("ordered", "factor", "new_ordered", "next", "integer"),
...)

• opts_package_version(constructor = c("package_version", "next", "list"), ...)

• opts_pairlist(constructor = c("pairlist", "pairlist2"), ...)

• opts_person(constructor = c("person", "next"), ...)

• opts_POSIXct(constructor = c("as.POSIXct", ".POSIXct", "as_datetime", "as.POSIXct.numeric",
"as_datetime.numeric", "next", "atomic"), ..., origin = "1970-01-01")

• opts_POSIXlt(constructor = c("as.POSIXlt", "next", "list"), ...)

• opts_quosure(constructor = c("new_quosure", "next", "language"), ...)

• opts_quosures(constructor = c("new_quosures", "next", "list"), ...)

• opts_R_system_version(constructor = c("R_system_version", "next", "list"), ...)

• opts_R6(constructor = c("R6Class", "next"), ...)

• opts_R6ClassGenerator(constructor = c("R6Class", "next"), ...)

• opts_raw(constructor = c("as.raw", "charToRaw"), ..., trim = NULL, fill = c("default",
"rlang", "+", "...", "none"), compress = TRUE, representation = c("hexadecimal",
"decimal"))

• opts_rel(constructor = c("rel", "next", "double"), ...)

• opts_rowwise_df(constructor = c("default", "next", "list"), ...)

• opts_S4(constructor = c("new"), ...)

• opts_Scale(constructor = c("default", "next", "environment"), ...)

• opts_ScalesList(constructor = c("ScalesList", "next", "list"), ...)

• opts_simpleCondition(constructor = c("simpleCondition", "next"), ...)

• opts_simpleError(constructor = c("simpleError", "next"), ...)

• opts_simpleMessage(constructor = c("simpleMessage", "next"), ...)

• opts_simpleUnit(constructor = c("unit", "next", "double"), ...)

• opts_simpleWarning(constructor = c("simpleWarning", "next"), ...)

• opts_tbl_df(constructor = c("tibble", "tribble", "next", "list"), ..., trailing_comma
= TRUE, justify = c("left", "right", "centre", "none"), recycle = TRUE)

• opts_theme(constructor = c("theme", "next", "list"), ...)

• opts_ts(constructor = c("ts", "next", "atomic"), ...)

constructive-global_options 17

• opts_uneval(constructor = c("aes", "next", "list"), ...)

• opts_vctrs_list_of(constructor = c("list_of", "next", "list"), ...)

• opts_waiver(constructor = c("waiver", "next", "list"), ...)

• opts_warning(constructor = c("warningCondition", "next"), ...)

• opts_weakref(constructor = c("new_weakref"), ...)

• opts_xts(constructor = c("as.xts.matrix", "next"), ...)

• opts_yearmon(constructor = c("as.yearmon", "yearmon", "next"), ...)

• opts_yearqtr(constructor = c("as.yearqtr", "yearqtr", "next"), ...)

• opts_zoo(constructor = c("zoo", "next"), ...)

• opts_zooreg(constructor = c("zooreg", "next"), ...)

See Also

construct_dput() construct_base() construct_clip() construct_dump() construct_reprex()
construct_diff()

Examples

construct(head(cars))
construct(head(cars), opts_data.frame("read.table"))
construct(head(cars), opts_data.frame("next"))
construct(iris$Species)
construct(iris$Species, opts_atomic(compress = FALSE), opts_factor("new_factor"))
construct_multi(list(a = head(cars), b = iris$Species))

constructive-global_options

Global Options

Description

Set these options to tweak {constructive}’s global behavior, to set them permanently you can edit
your .RProfile (usethis::edit_r_profile() might help).

Details

• Set options(constructive_print_mode = <character>) to change the default value of the
print_mode argument, of print.constructive, where <character> is a vector of strings
among the following :

– "console" : The default behavior, the code is printed in the console
– "script" : The code is copied to a new R script
– "reprex" : The code is shown in the viewer as a reprex, the reprex (not only the code!)

is also copied to the clipboard.

18 construct_clip

– "clipboard" : The constructed code is copied to the clipboard, if combined with "reprex"
this takes precedence (the reprex is showed in the viewer, the code without output is
copied to the clipboard)

• Set options(constructive_opts_template = <list>) to set default constructive options,
see documentation of the template arg in ?construct

• Set options(constructive_pretty = FALSE) to disable pretty printing using {prettycode}

construct_clip Construct to clipboard

Description

This is a simple wrapper for convenience, construct_clip(x, ...) is equivalent to print(construct(x,
...), print_mode = "clipboard") (an idiom that you might use to use the clipboard with other
functions). For more flexible printing options see ?constructive_print_mode.

Usage

construct_clip(
x,
...,
data = NULL,
pipe = NULL,
check = NULL,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE,
pedantic_encoding = FALSE,
compare = compare_options(),
one_liner = FALSE,
template = getOption("constructive_opts_template"),
classes = NULL

)

Arguments

x An object, for construct_multi() a named list or an environment.

... Constructive options built with the opts_*() family of functions. See the "Con-
structive options" section below.

data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

pipe Which pipe to use, either "base" or "magrittr". Defaults to "base" for R >=
4.2, otherwise to "magrittr".

check Boolean. Whether to check if the created code reproduces the object using
waldo::compare().

construct_clip 19

unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct strings and variable names. This makes sure that homo-
glyphs (different spaces and other identically displayed unicode characters) are
printed differently, and avoid possible unfortunate copy and paste auto conver-
sion issues. "latin" is more lax and uses all latin characters (code point < 256).
"character" shows all characters, but not emojis. Finally "unicode" displays all
characters and emojis, which is what dput() does.

escape Boolean. Whether to escape double quotes and backslashes. If FALSE we use
single quotes to surround strings (including variable and element names) con-
taining double quotes, and raw strings for strings that contain backslashes and/or
a combination of single and double quotes. Depending on unicode_representation
escape = FALSE cannot be applied on all strings.

pedantic_encoding

Boolean. Whether to mark strings with the "unknown" encoding rather than an
explicit native encoding ("UTF-8" or "latin1") when it’s necessary to reproduce
the binary representation exactly. This detail is normally of very little signifi-
cance. The reason why we’re not pedantic by default is that the constructed code
might be different in the console and in snapshot tests and reprexes due to the
latter rounding some angles, and it would be confusing for users.

compare Parameters passed to waldo::compare(), built with compare_options().

one_liner Boolean. Whether to collapse the output to a single line of code.

template A list of constructive options built with opts_*() functions, they will be over-
riden by Use it to set a default behavior for {constructive}.

classes A character vector of classes for which to use idiomatic constructors when avail-
able, we can provide a package instead of all its classes, in the "{pkg}" form,
and we can use a minus sign (inside the quotes) to exclude rather than include.
By default we use idiomatic constructors whenever possible. The special values
"*none*" and "*base*" can be used to restrict the idiomatic construction to the
objects. See construct_dput() and construct_base() for wrappers around
this feature.

Value

An object of class ’constructive’, invisibly. Called for side effects.

Examples

Not run:
construct_clip(head(cars))

End(Not run)

20 construct_diff

construct_diff Display diff of object definitions

Description

This calls construct() on two objects and compares the output using diffobj::diffChr().

Usage

construct_diff(
target,
current,
...,
data = NULL,
pipe = NULL,
check = TRUE,
compare = compare_options(),
one_liner = FALSE,
template = getOption("constructive_opts_template"),
classes = NULL,
mode = c("sidebyside", "auto", "unified", "context"),
interactive = TRUE

)

Arguments

target the reference object

current the object being compared to target

... Constructive options built with the opts_*() family of functions. See the "Con-
structive options" section below.

data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

pipe Which pipe to use, either "base" or "magrittr". Defaults to "base" for R >=
4.2, otherwise to "magrittr".

check Boolean. Whether to check if the created code reproduces the object using
waldo::compare().

compare Parameters passed to waldo::compare(), built with compare_options().

one_liner Boolean. Whether to collapse the output to a single line of code.

template A list of constructive options built with opts_*() functions, they will be over-
riden by Use it to set a default behavior for {constructive}.

construct_dput 21

classes A character vector of classes for which to use idiomatic constructors when avail-
able, we can provide a package instead of all its classes, in the "{pkg}" form,
and we can use a minus sign (inside the quotes) to exclude rather than include.
By default we use idiomatic constructors whenever possible. The special values
"*none*" and "*base*" can be used to restrict the idiomatic construction to the
objects. See construct_dput() and construct_base() for wrappers around
this feature.

mode, interactive
passed to diffobj::diffChr()

Value

Returns NULL invisibly, called for side effects

Examples

Not run:
some object print the same though they're different
`construct_diff()` shows how they differ :
df1 <- data.frame(a=1, b = "x")
df2 <- data.frame(a=1L, b = "x", stringsAsFactors = TRUE)
attr(df2, "some_attribute") <- "a value"
df1
df2
construct_diff(df1, df2)

Those are made easy to compare
construct_diff(substr, substring)
construct_diff(month.abb, month.name)

more examples borrowed from {waldo} package
construct_diff(c("a", "b", "c"), c("a", "B", "c"))
construct_diff(c("X", letters), c(letters, "X"))
construct_diff(list(factor("x")), list(1L))
construct_diff(df1, df2)
x <- list(a = list(b = list(c = list(structure(1, e = 1)))))
y <- list(a = list(b = list(c = list(structure(1, e = "a")))))
construct_diff(x, y)

End(Not run)

construct_dput Construct using only low level constructors

Description

• construct_dput() is a closer counterpart to base::dput() that doesn’t use higher level
constructors such as data.frame() and factor().

22 construct_dput

• construct_base() uses higher constructors, but only for the classes maintained in the default
base R packages. This includes data.frame() and factor(), the S4 constructors from the
’method’ package etc, but not data.table() and other constructors for classes from other
packages.

Usage

construct_dput(
x,
...,
data = NULL,
pipe = NULL,
check = NULL,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE,
pedantic_encoding = FALSE,
compare = compare_options(),
one_liner = FALSE,
template = getOption("constructive_opts_template")

)

construct_base(
x,
...,
data = NULL,
pipe = NULL,
check = NULL,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE,
pedantic_encoding = FALSE,
compare = compare_options(),
one_liner = FALSE,
template = getOption("constructive_opts_template")

)

Arguments

x An object, for construct_multi() a named list or an environment.

... Constructive options built with the opts_*() family of functions. See the "Con-
structive options" section below.

data Named list or environment of objects we want to detect and mention by name
(as opposed to deparsing them further). Can also contain unnamed nested lists,
environments, or package names, in the latter case package exports and datasets
will be considered. In case of conflict, the last provided name is considered.

pipe Which pipe to use, either "base" or "magrittr". Defaults to "base" for R >=
4.2, otherwise to "magrittr".

check Boolean. Whether to check if the created code reproduces the object using
waldo::compare().

construct_dput 23

unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct strings and variable names. This makes sure that homo-
glyphs (different spaces and other identically displayed unicode characters) are
printed differently, and avoid possible unfortunate copy and paste auto conver-
sion issues. "latin" is more lax and uses all latin characters (code point < 256).
"character" shows all characters, but not emojis. Finally "unicode" displays all
characters and emojis, which is what dput() does.

escape Boolean. Whether to escape double quotes and backslashes. If FALSE we use
single quotes to surround strings (including variable and element names) con-
taining double quotes, and raw strings for strings that contain backslashes and/or
a combination of single and double quotes. Depending on unicode_representation
escape = FALSE cannot be applied on all strings.

pedantic_encoding

Boolean. Whether to mark strings with the "unknown" encoding rather than an
explicit native encoding ("UTF-8" or "latin1") when it’s necessary to reproduce
the binary representation exactly. This detail is normally of very little signifi-
cance. The reason why we’re not pedantic by default is that the constructed code
might be different in the console and in snapshot tests and reprexes due to the
latter rounding some angles, and it would be confusing for users.

compare Parameters passed to waldo::compare(), built with compare_options().

one_liner Boolean. Whether to collapse the output to a single line of code.

template A list of constructive options built with opts_*() functions, they will be over-
riden by Use it to set a default behavior for {constructive}.

Details

Both functions are valuable for object inspection, and might provide more stable snapshots, since
supporting more classes in the package means the default output of construct() might change
over time for some objects.

To use higher level constructor from the base package itself, excluding for instance stats::ts(),
utils::person() or methods::classGeneratorFunction()), we can call construct(x, classes = "{base}"

Value

An object of class ’constructive’.

Examples

construct_dput(head(iris, 2))
construct_base(head(iris, 2))

24 construct_issues

construct_dump Dump Constructed Code to a File

Description

An alternative to base::dump() using code built with constructive.

Usage

construct_dump(x, path, append = FALSE, ...)

Arguments

x A named list or an environment.

path File or connection to write to.

append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if the file does not exist a new file is created.

... Forwarded to construct_multi()

Value

Returns NULL invisibly, called for side effects.

construct_issues Show constructive issues

Description

Usually called without arguments right after an imperfect code generation, but can also be called on
the ’constructive’ object itself.

Usage

construct_issues(x = NULL)

Arguments

x An object built by construct(), if NULL the latest encountered issues will be
displayed

Value

A character vector with class "waldo_compare"

construct_reprex 25

construct_reprex construct_reprex

Description

construct_reprex() constructs all objects of the local environment, or a caller environment n
steps above. If n > 0 the function call is also included in a comment.

Usage

construct_reprex(..., n = 0, include_dotted = TRUE)

Arguments

... Forwarded to construct_multi()

n The number of steps to go up on the call stack

include_dotted Whether to include names starting with dots, this includes .Random.seed in
the global environment and objects like .Class and .Generic in the execution
environments of S3 methods.

Details

construct_reprex() doesn’t call the {reprex} package. construct_reprex() builds reproducible
data while the reprex package build reproducible output once you have the data.

construct_reprex() wraps construct_multi() and is thus able to construct unevaluated argu-
ments using delayedAssign(). This means we can construct reprexes for functions that use Non
Standard Evaluation.

A useful trick is to use options(error = recover) to be able to inspect frames on error, and use
construct_reprex() from there to reproduce the data state.

construct_reprex() might fail to reproduce the output of functions that refer to environments
other than their caller environment. We believe these are very rare and that the simplicity is worth
the rounded corners, but if you encounter these limitations please do open a ticket on our issue
tracker at https://github.com/cynkra/constructive/ and we might expand the feature.

Value

An object of class ’constructive’.

See Also

construct_multi()

26 deparse_call

construct_signature Construct a function’s signature

Description

Construct a function’s signature such as the one you can see right below in the ’Usage’ section.

Usage

construct_signature(x, name = NULL, one_liner = FALSE, style = TRUE)

Arguments

x A function

name The name of the function, by default we use the symbol provided to x

one_liner Boolean. Whether to collapse multi-line expressions on a single line using semi-
colons.

style Boolean. Whether to give a class "constructive_code" on the output for pretty
printing.

Value

a string or a character vector, with a class "constructive_code" for pretty printing if style is TRUE

Examples

construct_signature(lm)

deparse_call Deparse a language object

Description

An alternative to base::deparse() and rlang::expr_deparse() that handles additional corner
cases and fails when encountering tokens other than symbols and syntactic literals where cited al-
ternatives would produce non syntactic code.

deparse_call 27

Usage

deparse_call(
call,
one_liner = FALSE,
pipe = FALSE,
style = TRUE,
collapse = !style,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE,
pedantic_encoding = FALSE

)

Arguments

call A call.

one_liner Boolean. Whether to collapse multi-line expressions on a single line using semi-
colons.

pipe Boolean. Whether to use the base pipe to disentangle nested calls. This works
best on simple calls.

style Boolean. Whether to give a class "constructive_code" on the output for pretty
printing.

collapse Boolean. Whether to collapse the output to a single string, won’t be directly
visible if style is TRUE.

unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct strings and variable names. This makes sure that homo-
glyphs (different spaces and other identically displayed unicode characters) are
printed differently, and avoid possible unfortunate copy and paste auto conver-
sion issues. "latin" is more lax and uses all latin characters (code point < 256).
"character" shows all characters, but not emojis. Finally "unicode" displays all
characters and emojis, which is what dput() does.

escape Boolean. Whether to escape double quotes and backslashes. If FALSE we use
single quotes to surround strings (including variable and element names) con-
taining double quotes, and raw strings for strings that contain backslashes and/or
a combination of single and double quotes. Depending on unicode_representation
escape = FALSE cannot be applied on all strings.

pedantic_encoding

Boolean. Whether to mark strings with the "unknown" encoding rather than an
explicit native encoding ("UTF-8" or "latin1") when it’s necessary to reproduce
the binary representation exactly. This detail is normally of very little signifi-
cance. The reason why we’re not pedantic by default is that the constructed code
might be different in the console and in snapshot tests and reprexes due to the
latter rounding some angles, and it would be confusing for users.

Value

a string or a character vector, with a class "constructive_code" for pretty printing if style is TRUE.

28 opts_array

Examples

expr <- quote(foo(bar({this; that}, 1)))
deparse_call(expr)
deparse_call(expr, one_liner = TRUE)
deparse_call(expr, pipe = TRUE)
deparse_call(expr, style = FALSE)

extend-constructive Extend constructive

Description

We export a collection of functions that can be used to design custom methods for .cstr_construct()
or custom constructors for a given method.

• .cstr_new_class() : Open template to support a new class

• .cstr_new_constructor() : Open template to implement a new constructor

• .cstr_construct() : Low level generic for object construction code generation

• .cstr_repair_attributes()‘ : Helper to repair attributes of objects

• .cstr_options() : Define and check options to pass to custom constructors

• .cstr_apply() : Build recursively the arguments passed to your constructor

• .cstr_wrap() : Wrap argument code in function code (rarely needed)

• .cstr_pipe() : Pipe a call to another (rarely needed)

• .cstr_combine_errors() : helper function report several errors at once when relevant

opts_array Constructive options for arrays

Description

These options will be used on arrays. Note that arrays can be built on top of vectors, lists or
expressions. Canonical arrays have an implicit class "array" shown by class() but "array" is not
part of the class attribute.

Usage

opts_array(constructor = c("array", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

opts_AsIs 29

Details

Depending on constructor, we construct the object as follows:

• "array" (default): Use the array() function

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

Value

An object of class <constructive_options/constructive_options_array>

opts_AsIs Constructive options for the class AsIs

Description

These options will be used on objects of class AsIs. AsIs objects are created with I() which only
prepends "AsIs" to the class attribute.

Usage

opts_AsIs(constructor = c("I", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "I" (default): Use the I() function

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

Value

An object of class <constructive_options/constructive_options_AsIs>

30 opts_atomic

opts_atomic Constructive options for atomic types

Description

These options will be used on atomic types ("logical", "integer", "numeric", "complex", "charac-
ter" and "raw"). They can also be directly provided to atomic types through their own opts_*()
function, and in this case the latter will have precedence.

Usage

opts_atomic(
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE

)

Arguments

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements.

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

Details

If trim is provided, depending on fill we will present trimmed elements as followed:

• "default" : Use default atomic constructors, so for instance c("a", "b", "c") might be-
come c("a", character(2)).

• "rlang" : Use rlang atomic constructors, so for instance c("a", "b", "c") might become
c("a", rlang::new_character(2)), these rlang constructors create vectors of NAs, so it’s
different from the default option.

• "+": Use unary +, so for instance c("a", "b", "c") might become c("a", +2).

• "...": Use ..., so for instance c("a", "b", "c") might become c("a", ...)

• "none": Don’t represent trimmed elements.

Depending on the case some or all of the choices above might generate code that cannot be executed.
The 2 former options above are the most likely to succeed and produce an output of the same type
and dimensions recursively. This would at least be the case for data frame.

opts_blob 31

Value

An object of class <constructive_options/constructive_options_atomic>

Examples

construct(iris, opts_atomic(trim = 2), check = FALSE) # fill = "default"
construct(iris, opts_atomic(trim = 2, fill = "rlang"), check = FALSE)
construct(iris, opts_atomic(trim = 2, fill = "+"), check = FALSE)
construct(iris, opts_atomic(trim = 2, fill = "..."), check = FALSE)
construct(iris, opts_atomic(trim = 2, fill = "none"), check = FALSE)
construct(iris, opts_atomic(trim = 2, fill = "none"), check = FALSE)
x <- c("a a", "a\U000000A0a", "a\U00002002a", "\U430 \U430")
construct(x, opts_atomic(unicode_representation = "unicode"))
construct(x, opts_atomic(unicode_representation = "character"))
construct(x, opts_atomic(unicode_representation = "latin"))
construct(x, opts_atomic(unicode_representation = "ascii"))

opts_blob Constructive options for class ’blob’

Description

These options will be used on objects of class ’blob’.

Usage

opts_blob(constructor = c("blob", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "blob" (default): Use blob::blob() on a raw object.

– "new_blob" (default): Use blob::new_blob() on a list of raw objects.

• "as.blob" : Use blob::as_blob() on a character vector

Use opts_raw() and opts_character() to tweak the construction of raw or character objects
constructed as part of the blob construction.

Value

An object of class <constructive_options/constructive_options_blob>

32 opts_character

opts_character Constructive options for type ’character’

Description

These options will be used on objects of type ’character’. This type has a single native constructor,
but some additional options can be set.

unicode_representation and escape are usually better set in the main function (construct()
or other) so they apply not only on strings but on symbols and argument names as well.

To set options on all atomic types at once see opts_atomic().

Usage

opts_character(
constructor = c("default"),
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE,
unicode_representation = c("ascii", "latin", "character", "unicode"),
escape = FALSE

)

Arguments

constructor String. Method used to construct the object, often the name of a function.

... Constructive options built with the opts_*() family of functions. See the "Con-
structive options" section below.

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements. See ?opts_atomic

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

unicode_representation

By default "ascii", which means only ASCII characters (code point < 128) will
be used to construct strings and variable names. This makes sure that homo-
glyphs (different spaces and other identically displayed unicode characters) are
printed differently, and avoid possible unfortunate copy and paste auto conver-
sion issues. "latin" is more lax and uses all latin characters (code point < 256).
"character" shows all characters, but not emojis. Finally "unicode" displays all
characters and emojis, which is what dput() does.

escape Boolean. Whether to escape double quotes and backslashes. If FALSE we use
single quotes to surround strings (including variable and element names) con-
taining double quotes, and raw strings for strings that contain backslashes and/or

opts_classGeneratorFunction 33

a combination of single and double quotes. Depending on unicode_representation
escape = FALSE cannot be applied on all strings.

Value

An object of class <constructive_options/constructive_options_character>

opts_classGeneratorFunction

Constructive options for class ’classGeneratorFunction’

Description

These options will be used on objects of class ’classGeneratorFunction’.

Usage

opts_classGeneratorFunction(constructor = c("setClass"), ...)

Arguments

constructor String. Name of the function used to construct the object.
... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_classGeneratorFunction>

opts_classPrototypeDef

Constructive options for class ’classPrototypeDef’

Description

These options will be used on objects of class ’classPrototypeDef’.

Usage

opts_classPrototypeDef(constructor = c("prototype"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.
... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_classPrototypeDef>

34 opts_complex

opts_classRepresentation

Constructive options for class ’classRepresentation’

Description

These options will be used on objects of class ’classRepresentation’.

Usage

opts_classRepresentation(constructor = c("getClassDef"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_classRepresentation>

opts_complex Constructive options for type ’complex’

Description

These options will be used on objects of type ’complex’. This type has a single native constructor,
but some additional options can be set.

To set options on all atomic types at once see opts_atomic().

Usage

opts_complex(
constructor = c("default"),
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE

)

opts_constructive_options 35

Arguments

constructor String. Method used to construct the object, often the name of a function.

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements. See ?opts_atomic

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

Value

An object of class <constructive_options/constructive_options_complex>

opts_constructive_options

Constructive options for the class constructive_options

Description

These options will be used on objects of class constructive_options.

Usage

opts_constructive_options(constructor = c("opts", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "opts" : Use the relevant constructive::opts_?() function.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

Value

An object of class <constructive_options/constructive_options_constructive_options>

36 opts_data.frame

opts_data.frame Constructive options for class ’data.frame’

Description

These options will be used on objects of class ’data.frame’.

Usage

opts_data.frame(
constructor = c("data.frame", "read.table", "next", "list"),
...,
recycle = TRUE

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

recycle Boolean. For the "data.frame" constructor. Whether to recycle scalars to com-
press the output.

Details

Depending on constructor, we construct the object as follows:

• "data.frame" (default): Wrap the column definitions in a data.frame() call. If some
columns are lists or data frames, we wrap the column definitions in tibble::tibble(). then
use as.data.frame().

• "read.table" : We build the object using read.table() if possible, or fall back to data.frame().

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_data.frame>

opts_data.table 37

opts_data.table Constructive options for class ’data.table’

Description

These options will be used on objects of class ’data.table’.

Usage

opts_data.table(
constructor = c("data.table", "next", "list"),
...,
selfref = FALSE,
recycle = TRUE

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

selfref Boolean. Whether to include the .internal.selfref attribute. It’s probably
not useful, hence the default, waldo::compare() is used to assess the output
fidelity and doesn’t check it, but if you really need to generate code that builds
an object identical() to the input you’ll need to set this to TRUE.#’

recycle Boolean. Whether to recycle scalars to compress the output.

Details

Depending on constructor, we construct the object as follows:

• "data.table" (default): Wrap the column definitions in a data.table() call.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_data.table>

38 opts_Date

opts_Date Constructive options class ’Date’

Description

These options will be used on objects of class ’date’.

Usage

opts_Date(
constructor = c("as.Date", "as_date", "date", "new_date", "as.Date.numeric",
"as_date.numeric", "next", "double"),

...,
origin = "1970-01-01"

)

Arguments

constructor String. Name of the function used to construct the object.
... Additional options used by user defined constructors through the opts object
origin Origin to be used, ignored when irrelevant.

Details

Depending on constructor, we construct the object as follows:

• "as.Date" (default): We wrap a character vector with as.Date(), if the date is infinite it can-
not be converted to character and we wrap a numeric vector and provide an origin argument.

• "as_date" : Similar as above but using lubridate::as_date(), the only difference is that
we never need to supply origin.

• "date" : Similar as above but using lubridate::date(), it doesn’t support infinite dates so
we fall back on lubridate::as_date() when we encounter them.

• "new_date" : We wrap a numeric vector with vctrs::new_date()

• "as.Date.numeric" : We wrap a numeric vector with as.Date() and use the provided
origin

• "as_date.numeric" : Same as above but using lubridate::as_date() and use the pro-
vided origin

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "double" : We define as an double vector and repair attributes

If the data is not appropriate for a constructor we fall back to another one appropriately.

Value

An object of class <constructive_options/constructive_options_Date>

opts_dm 39

opts_dm Constructive options class ’dm’

Description

These options will be used on objects of class ’dm’.

Usage

opts_dm(constructor = c("dm", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "dm" (default): We use dm::dm() and other functions from dm to adjust the content.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_dm>

opts_dots Constructive options for type ’...’

Description

These options will be used on objects of type ’...’. These are rarely encountered in practice. By
default this function is useless as nothing can be set, this is provided in case users want to extend
the method with other constructors.

Usage

opts_dots(constructor = c("default"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

40 opts_double

Details

Depending on constructor, we construct the object as follows:

• "default" : We use the construct (function(...) get(\"...\"))(a = x, y) which we
evaluate in the correct environment.

Value

An object of class <constructive_options/constructive_options_dots>

opts_double Constructive options for type ’double’

Description

These options will be used on objects of type ’double’. This type has a single native constructor,
but some additional options can be set.

To set options on all atomic types at once see opts_atomic().

Usage

opts_double(
constructor = c("default"),
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE

)

Arguments

constructor String. Method used to construct the object, often the name of a function.

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements. See ?opts_atomic

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

Value

An object of class <constructive_options/constructive_options_double>

opts_environment 41

opts_environment Constructive options for type ’environment’

Description

Environments use reference semantics, they cannot be copied. An attempt to copy an environment
would indeed yield a different environment and identical(env, copy) would be FALSE.
Moreover most environments have a parent (exceptions are emptyenv() and some rare cases where
the parent is NULL) and thus to copy the environment we’d have to have a way to point to the parent,
or copy it too.
For this reason environments are constructive’s cryptonite. They make some objects impossible to
reproduce exactly. And since every function or formula has one they’re hard to avoid.

Usage

opts_environment(
constructor = c(".env", "list2env", "as.environment", "new.env", "topenv",
"new_environment", "predefine"),

...,
recurse = FALSE

)

Arguments

constructor String. Name of the function used to construct the environment, see Construc-
tors section.

... Additional options used by user defined constructors through the opts object

recurse Boolean. Only considered if constructor is "list2env" or "new_environment".
Whether to attempt to recreate all parent environments until a known environ-
ment is found, if FALSE (the default) we will use topenv() to find a known
ancestor to set as the parent.

Details

In some case we can build code that points to a specific environment, namely:

• .GlobalEnv, .BaseNamespaceEnv, baseenv() and emptyenv() are used to construct the
global environment, the base namespace, the base package environment and the empty envi-
ronment

• Namespaces are constructed using asNamespace("pkg")

• Package environments are constructed using as.environment("package:pkg")

• "imports" environments are constructed with parent.env(asNamespace("pkg"))

• "lazydata" environments are constructed with getNamespaceInfo("pkg", "lazydata")

42 opts_environment

By default For other environments we use constructive’s function constructive::.env(), it
fetches the environment from its memory address and provides as additional information the se-
quence of parents until we reach a special environment (those enumerated above). The advantage
of this approach is that it’s readable and that the object is accurately reproduced. The inconvenient
is that it’s not stable between sessions. If an environment has a NULL parent it’s always constructed
with constructive::.env(), whatever the choice of the constructor.
Often however we wish to be able to reproduce from scratch a similar environment, so that we might
run the constructed code later in a new session. We offer different different options to do this, with
different trade-offs regarding accuracy and verbosity.
{constructive} will not signal any difference if it can reproduce an equivalent environment, defined
as containing the same values and having a same or equivalent parent.

See also the ignore_function_env argument in ?compare_options, which disables the check of
environments of function.

Value

An object of class <constructive_options/constructive_options_environment>

Constructors

We might set the constructor argument to:

• ".env" (default): use constructive::.env() to construct the environment from its memory
address.

• "list2env": We construct the environment as a list then use base::list2env() to convert
it to an environment and assign it a parent. By default we will use base::topenv() to con-
struct a parent. If recurse is TRUE the parent will be built recursively so all ancestors will
be created until we meet a known environment, this might be verbose and will fail if environ-
ments are nested too deep or have a circular relationship. If the environment is empty we use
new.env(parent=) for a more economic syntax.

• "new_environment" : Similar to the above, but using rlang::new_environment().
• "new.env" : All environments will be recreated with the code "base::new.env()", without

argument, effectively creating an empty environment child of the local (often global) environ-
ment. This is enough in cases where the environment doesn’t matter (or matters as long as it
inherits from the local environment), as is often the case with formulas. recurse is ignored.

• "as.environment" : we attempt to construct the environment as a list and use base::as.environment()
on top of it, as in as.environment(list(a=1, b=2)), it will contain the same variables as
the original environment but the parent will be the emptyenv(). recurse is ignored.

• "topenv" : we construct base::topenv(x), see ?topenv. recurse is ignored. This is the
most accurate we can be when constructing only special environments.

• "predefine" : Building environments from scratch using the above methods can be verbose,
sometimes redundant and sometimes even impossible due to circularity (e.g. an environment
referencing itself). With "predefine" we define the environments and their content above the
object returning call, using placeholder names ..env.1.., ..env.2.. etc. The caveat is that
the created code won’t be a single call and will create objects in the workspace. recurse is
ignored.

opts_externalptr 43

opts_externalptr Constructive options for type ’externalptr’

Description

These options will be used on objects of type ’externalptr’. By default this function is useless as
nothing can be set, this is provided in case users wan to extend the method with other constructors.

Usage

opts_externalptr(constructor = c("default"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "default" : We use a special function from the constructive

Value

An object of class <constructive_options/constructive_options_externalptr>

opts_factor Constructive options for class ’factor’

Description

These options will be used on objects of class ’factor’.

Usage

opts_factor(
constructor = c("factor", "as_factor", "new_factor", "next", "integer"),
...

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

44 opts_formula

Details

Depending on constructor, we construct the object as follows:

• "factor" (default): Build the object using factor(), levels won’t be defined explicitly if
they are in alphabetical order (locale dependent!)

• "as_factor" : Build the object using forcats::as_factor() whenever possible, i.e. when
levels are defined in order of appearance in the vector. Otherwise falls back to "factor"
constructor.

• "new_factor" : Build the object using vctrs::new_factor(). Levels are always defined
explicitly.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "integer" : We define as an integer vector and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

opts_formula Constructive options for formulas

Description

These options will be used on formulas, defined as calls to ~, regardless of their "class" attribute.

Usage

opts_formula(
constructor = c("default", "formula", "as.formula", "new_formula", "next"),
...,
environment = TRUE

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

environment Boolean. Whether to attempt to construct the environment, if it makes a differ-
ence to construct it.
Depending on constructor, we construct the formula as follows:

• "default": We construct the formula in the most common way using the
~ operator.

• "formula" : deparse the formula as a string and use base::formula() on
top of it.

• "as.formula" : Same as above, but using base::as.formula().

opts_function 45

• "new_formula" : extract both sides of the formula as separate language
objects and feed them to rlang::new_formula(), along with the recon-
structed environment if relevant.

Value

An object of class <constructive_options/constructive_options_formula>

opts_function Constructive options for functions

Description

These options will be used on functions, i.e. objects of type "closure", "special" and "builtin".

Usage

opts_function(
constructor = c("function", "as.function", "new_function"),
...,
environment = TRUE,
srcref = FALSE,
trim = NULL

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

environment Boolean. Whether to reconstruct the function’s environment.

srcref Boolean. Whether to attempt to reconstruct the function’s srcref.

trim NULL or integerish. Maximum of lines showed in the body before it’s trimmed,
replacing code with Note that it will necessarily produce code that doesn’t
reproduce the input, but it will parse and evaluate without failure.

Details

Depending on constructor, we construct the object as follows:

• "function" (default): Build the object using a standard function() {} definition. This won’t
set the environment by default, unless environment is set to TRUE. If a srcref is available, if
this srcref matches the function’s definition, and if trim is left NULL, the code is returned from
using the srcref, so comments will be shown in the output of construct(). In the rare case
where the ast body of the function contains non syntactic nodes this constructor cannot be
used and falls back to the "as.function" constructor.

• "as.function" : Build the object using a as.function() call. back to data.frame().

• "new_function" : Build the object using a rlang::new_function() call.

46 opts_grouped_df

Value

An object of class <constructive_options/constructive_options_function>

opts_ggplot Constructive options for class ’ggplot’

Description

These options will be used on objects of class ’ggplot’.

Usage

opts_ggplot(constructor = c("ggplot", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "ggplot" (default): Use ggplot2::ggplot()

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_ggplot>

opts_grouped_df Constructive options for class ’grouped_df’

Description

These options will be used on objects of class ’grouped_df’.

Usage

opts_grouped_df(constructor = c("default", "next", "list"), ...)

opts_hexmode 47

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : We define as an list object and repair attributes.

Value

An object of class <constructive_options/constructive_options_factor>

opts_hexmode Constructive options for class ’hexmode’

Description

These options will be used on objects of class ’hexmode’.

Usage

opts_hexmode(constructor = c("as.hexmode", "next"), ..., integer = FALSE)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

integer Whether to use as.hexmode() on integer rather than character

Details

Depending on constructor, we construct the object as follows:

• "as.hexmode" (default): We build the object using as.hexmode()

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_hexmode>

48 opts_integer64

opts_integer Constructive options for type ’integer’

Description

These options will be used on objects of type ’integer’. This type has a single native constructor,
but some additional options can be set.

To set options on all atomic types at once see opts_atomic().

Usage

opts_integer(
constructor = c("default"),
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE

)

Arguments

constructor String. Method used to construct the object, often the name of a function.

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements. See ?opts_atomic

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

Value

An object of class <constructive_options/constructive_options_integer>

opts_integer64 Constructive options for class ’integer64’

Description

These options will be used on objects of class ’integer64’.

Usage

opts_integer64(constructor = c("as.integer64", "next", "double"), ...)

opts_language 49

Arguments

constructor String. Name of the function used to construct the object, see Details section.
... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "as.integer64" (default): Build the object using as.integer64() on a character vector.
• "next" : Use the constructor for the next supported class. Call .class2() on the object to

see in which order the methods will be tried.
• "double" : We define as an atomic vector and repair attributes.

We don’t recommend the "next" and "double" constructors for this class as they give incorrect
results on negative or NA "integer64" objects due to some quirks in the implementation of the ’bit64’
package.

Value

An object of class <constructive_options/constructive_options_integer64>

opts_language Constructive options for type ’language’

Description

These options will be used on objects of type ’language’. By default this function is useless as
nothing can be set, this is provided in case users want to extend the method with other constructors.

Usage

opts_language(constructor = c("default"), ...)

Arguments

constructor String. Name of the function used to construct the object.
... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "default" : We use constructive’s deparsing algorithm on attributeless calls, and use as.call()
on other language elements when attributes need to be constructed.

Value

An object of class <constructive_options/constructive_options_language>

50 opts_list

opts_Layer Constructive options for class ’Layer’ (ggplot2)

Description

These options will be used on objects of class ’Layer’.

Usage

opts_Layer(constructor = c("default", "layer", "next", "environment"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "default" : We attempt to use the function originally used to create the plot.

• "layer" : We use the ggplot2::layer() function

• "environment" : Reconstruct the object using the general environment method (which can
be itself tweaked using opts_environment())

The latter constructor is the only one that reproduces the object exactly since Layers are environ-
ments and environments can’t be exactly copied (see ?opts_environment)

Value

An object of class <constructive_options/constructive_options_Layer>

opts_list Constructive options for type ’list’

Description

These options will be used on objects of type ’list’.

Usage

opts_list(
constructor = c("list", "list2"),
...,
trim = NULL,
fill = c("vector", "new_list", "+", "...", "none")

)

opts_logical 51

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements.

Details

Depending on constructor, we construct the object as follows:

• "list" (default): Build the object by calling list().

• "list2": Build the object by calling rlang::list2(), the only difference with the above is
that we keep a trailing comma when the list is not trimmed and the call spans several lines.

If trim is provided, depending on fill we will present trimmed elements as followed:

• "vector" (default): Use vector(), so for instance list("a", "b", "c") might become
c(list("a"), vector("list", 2)).

• "new_list": Use rlang::new_list(), so for instance list("a", "b", "c") might become
c(list("a"), rlang::new_list(2)).

• "+": Use unary +, so for instance list("a", "b", "c") might become list("a", +2).

• "...": Use ..., so for instance list("a", "b", "c") might become list("a", ...)

• "none": Don’t represent trimmed elements.

When trim is used the output is parsable but might not be possible to evaluate, especially with fill
= "...". In that case you might want to set check = FALSE

Value

An object of class <constructive_options/constructive_options_list>

opts_logical Constructive options for type ’logical’

Description

These options will be used on objects of type ’logical’. This type has a single native constructor,
but some additional options can be set.

To set options on all atomic types at once see opts_atomic().

52 opts_matrix

Usage

opts_logical(
constructor = c("default"),
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE

)

Arguments

constructor String. Method used to construct the object, often the name of a function.

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements. See ?opts_atomic

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

Value

An object of class <constructive_options/constructive_options_logical>

opts_matrix Constructive options for matrices

Description

Matrices are atomic vectors, lists, or objects of type "expression" with a "dim" attributes of length
2.

Usage

opts_matrix(constructor = c("matrix", "array", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

opts_mts 53

Details

Depending on constructor, we construct the object as follows:

• "matrix" : We use matrix()

• "array" : We use array()

• "cbind","rbind" : We use cbind() or "rbind()", this makes named columns and rows
easier to read.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "array"

• "atomic" : We define as an atomic vector and repair attributes

Value

An object of class <constructive_options/constructive_options_matrix>

opts_mts Constructive options for time-series objets

Description

Depending on constructor, we construct the object as follows:

• "ts" : We use ts()

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "atomic"

• "atomic" : We define as an atomic vector and repair attributes

Usage

opts_mts(constructor = c("ts", "next", "atomic"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_mts>

54 opts_octmode

opts_numeric_version Constructive options for numeric_version

Description

Depending on constructor, we construct the object as follows:

• "numeric_version" : We use numeric_version()

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "list"

• "list" : We define as a list and repair attributes

Usage

opts_numeric_version(constructor = c("numeric_version", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_numeric_version>

opts_octmode Constructive options for class ’octmode’

Description

These options will be used on objects of class ’octmode’.

Usage

opts_octmode(constructor = c("as.octmode", "next"), ..., integer = FALSE)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

integer Whether to use as.octmode() on integer rather than character

opts_ordered 55

Details

Depending on constructor, we construct the object as follows:

• "as.octmode" (default): We build the object using as.octmode()

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_octmode>

opts_ordered Constructive options for class ’ordered’

Description

These options will be used on objects of class ’ordered’.

Usage

opts_ordered(
constructor = c("ordered", "factor", "new_ordered", "next", "integer"),
...

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "ordered" (default): Build the object using ordered(), levels won’t be defined explicitly if
they are in alphabetical order (locale dependent!)

• "factor" : Same as above but build the object using factor() and ordered = TRUE.

• "new_ordered" : Build the object using vctrs::new_ordered(). Levels are always defined
explicitly.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "integer" : We define as an integer vector and repair attributes

Value

An object of class <constructive_options/constructive_options_ordered>

56 opts_pairlist

opts_package_version Constructive options for package_version

Description

Depending on constructor, we construct the object as follows:

• "package_version" : We use package_version()

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "array"

• "list" : We define as a list and repair attributes

Usage

opts_package_version(constructor = c("package_version", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object.
... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_package_version>

opts_pairlist Constructive options for pairlists

Description

Depending on constructor, we construct the object as follows:

• "pairlist" (default): Build the object using a pairlist() call.
• "pairlist2" : Build the object using a rlang::pairlist2() call.

Usage

opts_pairlist(constructor = c("pairlist", "pairlist2"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.
... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_pairlist>

opts_POSIXct 57

opts_POSIXct Constructive options for class ’POSIXct’

Description

These options will be used on objects of class ’POSIXct’.

Usage

opts_POSIXct(
constructor = c("as.POSIXct", ".POSIXct", "as_datetime", "as.POSIXct.numeric",

"as_datetime.numeric", "next", "atomic"),
...,
origin = "1970-01-01"

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

origin Origin to be used, ignored when irrelevant.

Details

Depending on constructor, we construct the object as follows:

• "as.POSIXct" (default): Build the object using a as.POSIXct() call on a character vector.

• ".POSIXct" : Build the object using a .POSIXct() call on a numeric vector.

• "as_datetime" : Build the object using a lubridate::as_datetime() call on a character
vector.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "atomic" : We define as an atomic vector and repair attributes.

If the data is not appropriate for a constructor we fall back to another one appropriately. In particular
corrupted POSIXct objects such as those defined on top of integers (or worse) are all constructed
with the ".POSIXct" constructor.

Value

An object of class <constructive_options/constructive_options_POSIXct>

58 opts_quosure

opts_POSIXlt Constructive options for class ’POSIXlt’

Description

These options will be used on objects of class ’POSIXlt’.

Usage

opts_POSIXlt(constructor = c("as.POSIXlt", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "as.POSIXlt" (default): Build the object using a as.POSIXlt() call on a character vector.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : We define as a list and repair attributes.

Value

An object of class <constructive_options/constructive_options_POSIXlt>

opts_quosure Constructive options for class ’quosure’

Description

These options will be used on objects of class ’quosure’.

Usage

opts_quosure(constructor = c("new_quosure", "next", "language"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

opts_quosures 59

Details

Depending on constructor, we construct the object as follows:

• "new_quosure" (default): Build the object using a new_quosure() call on a character vector.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "language" : We define as an language object and repair attributes.

Value

An object of class <constructive_options/constructive_options_quosure>

opts_quosures Constructive options for class ’quosures’

Description

These options will be used on objects of class ’quosures’.

Usage

opts_quosures(constructor = c("new_quosures", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "as_quosures" (default): Build the object using a as_quosures() call on a character vector.

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : We define as an list object and repair attributes.

Value

An object of class <constructive_options/constructive_options_quosures>

60 opts_R6

opts_R6 Constructive options for class ’R6’

Description

These options will be used on objects of class ’R6’.

Usage

opts_R6(constructor = c("R6Class", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "R6Class" (default): We build the object using R6Class()$new(), see details.

• "next" : Use the constructor for the next supported class.

Objects of class "R6" are harder to construct than "R6ClassGenerator" objects, because ’construc-
tive’ doesn’t know by default the constructor (i.e. class generator) that was used to build them.
So what we do is we build a class generator that generates this object by default. This is why the
generated code is in the form R6Class()$new().

Another layer of complexity is added when the object features an initialize() method, we cannot
implement it in the class generator because it might change the behavior of $new() and return a
wrong result (or fail). For this reason the initialize() method when it exists is repaired as an
extra step.

construct_diff() works well to inspect the differences between two R6 objects where alternatives
like waldo::compare() or base::all.equal() don’t return anything informative.

Value

An object of class <constructive_options/constructive_options_R6>

opts_R6ClassGenerator 61

opts_R6ClassGenerator Constructive options for class ’R6ClassGenerator’

Description

These options will be used on objects of class ’R6ClassGenerator’.

Usage

opts_R6ClassGenerator(constructor = c("R6Class", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "R6Class" (default): We build the object using R6Class().

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_R6ClassGenerator>

opts_raw Constructive options for type ’raw’

Description

These options will be used on objects of type ’raw’.

Depending on constructor, we construct the object as follows:

• "as.raw" (default): Use as.raw(), or raw() when relevant

• "charToRaw" : Use charToRaw() on a string, if the a raw vector contains a zero we fall back
to the "as.raw" constructor.

To set options on all atomic types at once see opts_atomic().

62 opts_rowwise_df

Usage

opts_raw(
constructor = c("as.raw", "charToRaw"),
...,
trim = NULL,
fill = c("default", "rlang", "+", "...", "none"),
compress = TRUE,
representation = c("hexadecimal", "decimal")

)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

trim NULL or integerish. Maximum of elements showed before it’s trimmed. Note
that it will necessarily produce code that doesn’t reproduce the input. This code
will parse without failure but its evaluation might fail.

fill String. Method to use to represent the trimmed elements. See ?opts_atomic

compress Boolean. If TRUE instead of c() Use seq(), rep() when relevant to simplify
the output.

representation For "as.raw" constructor. Respectively generate output in the formats as.raw(0x10)
or as.raw(16)

Value

An object of class <constructive_options/constructive_options_raw>

opts_rowwise_df Constructive options for class ’rowwise_df’

Description

These options will be used on objects of class ’rowwise_df’.

Usage

opts_rowwise_df(constructor = c("default", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.

... Additional options used by user defined constructors through the opts object

opts_R_system_version 63

Details

Depending on constructor, we construct the object as follows:

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : We define as an list object and repair attributes.

Value

An object of class <constructive_options/constructive_options_rowwise_df>

opts_R_system_version Constructive options for R_system_version

Description

Depending on constructor, we construct the object as follows:

• "R_system_version" : We use R_system_version()

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "list"

• "list" : We define as a list and repair attributes

Usage

opts_R_system_version(constructor = c("R_system_version", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_R_system_version>

64 opts_tbl_df

opts_S4 Constructive options for class ’S4’

Description

These options will be used on objects of class ’S4’. Note that the support for S4 is very experimental
so might easily break. Please report issues if it does.

Usage

opts_S4(constructor = c("new"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.
... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_S4>

opts_tbl_df Constructive options for tibbles

Description

These options will be used on objects of class ’tbl_df’, also known as tibbles.

Usage

opts_tbl_df(
constructor = c("tibble", "tribble", "next", "list"),
...,
trailing_comma = TRUE,
justify = c("left", "right", "centre", "none"),
recycle = TRUE

)

Arguments

constructor String. Name of the function used to construct the object, see Details section.
... Additional options used by user defined constructors through the opts object
trailing_comma Boolean. Whether to leave a trailing comma at the end of the constructor call

calls
justify String. Justification for columns if constructor is "tribble"
recycle Boolean. For the "tibble" constructor. Whether to recycle scalars to compress

the output.

opts_ts 65

Details

Depending on constructor, we construct the object as follows:

• "tibble" (default): Wrap the column definitions in a tibble::tibble() call.

• "tribble" : We build the object using tibble::tribble() if possible, and fall back to
tibble::tibble().

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried.

• "list" : Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_tbl_df>

opts_ts Constructive options for time-series objets

Description

Depending on constructor, we construct the object as follows:

• "ts" : We use ts()

• "next" : Use the constructor for the next supported class. Call .class2() on the object to
see in which order the methods will be tried. This will usually be equivalent to "atomic"

• "atomic" : We define as an atomic vector and repair attributes

Usage

opts_ts(constructor = c("ts", "next", "atomic"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_ts>

66 opts_weakref

opts_vctrs_list_of Constructive options for class ’data.table’

Description

These options will be used on objects of class ’data.table’.

Usage

opts_vctrs_list_of(constructor = c("list_of", "next", "list"), ...)

Arguments

constructor String. Name of the function used to construct the object, see Details section.
... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "list_of" (default): Wrap the column definitions in a list_of() call.
• "list" : Use list() and treat the class as a regular attribute.

Value

An object of class <constructive_options/constructive_options_vctrs_list_of>

opts_weakref Constructive options for the class weakref

Description

These options will be used on objects of type weakref. weakref objects are rarely encountered and
there is no base R function to create them. However rlang has a new_weakref function that we can
use.

Usage

opts_weakref(constructor = c("new_weakref"), ...)

Arguments

constructor String. Name of the constructor.
... Additional options used by user defined constructors through the opts object

Value

An object of class <constructive_options/constructive_options_array>

opts_xts 67

opts_xts Constructive options for class ’xts’

Description

These options will be used on objects of class ’xts’.

Usage

opts_xts(constructor = c("as.xts.matrix", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "as.xts.matrix" (default): We build the object using xts::as.xts.matrix().

• "as.xts.data.frame": We build the object using xts::as.xts.data.frame(), this is prob-
ably the most readable option but couldn’t be made the default constructor because it requires
the ’xts’ package to be installed .

• "xts": We build the object using xts::xts().

• ".xts": We build the object using xts::.xts().

• "next": Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_xts>

opts_yearmon Constructive options for class ’yearmon’

Description

These options will be used on objects of class ’yearmon’.

Usage

opts_yearmon(constructor = c("as.yearmon", "yearmon", "next"), ...)

68 opts_yearqtr

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "as.yearmon" (default): We build the object using zoo::as.yearmon() on a string in the
format "2000 Q3".

• "yearmon" : We build the object using zoo::yearmon() on a double in the format 2000.5

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_yearmon>

opts_yearqtr Constructive options for class ’yearqtr’

Description

These options will be used on objects of class ’yearqtr’.

Usage

opts_yearqtr(constructor = c("as.yearqtr", "yearqtr", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "as.yearqtr" (default): We build the object using zoo::as.yearqtr() on a string in the
format "2000 Q3".

• "yearqtr" : We build the object using zoo::yearqtr() on a double in the format 2000.5

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_yearqtr>

opts_zoo 69

opts_zoo Constructive options for class ’zoo’

Description

These options will be used on objects of class ’zoo’.

Usage

opts_zoo(constructor = c("zoo", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

Details

Depending on constructor, we construct the object as follows:

• "zoo" (default): We build the object using zoo::zoo().

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_zoo>

opts_zooreg Constructive options for class ’zooreg’

Description

These options will be used on objects of class ’zooreg’.

Usage

opts_zooreg(constructor = c("zooreg", "next"), ...)

Arguments

constructor String. Name of the function used to construct the object.

... Additional options used by user defined constructors through the opts object

70 other-opts

Details

Depending on constructor, we construct the object as follows:

• "zooreg" (default): We build the object using zoo::zooreg(), using the start and frequency
arguments.

• "next" : Use the constructor for the next supported class.

Value

An object of class <constructive_options/constructive_options_zooreg>

other-opts Other Opts Functions

Description

These opts_*() functions are not extensively documented yet. Hopefully the signature is self
explanatory, if not please raise an issue

Usage

opts_NULL(constructor = "NULL", ...)

opts_bibentry(constructor = c("bibentry", "next"), ...)

opts_citationFooter(constructor = c("citFooter", "next"), ...)

opts_citationHeader(constructor = c("citHeader", "next"), ...)

opts_difftime(constructor = c("as.difftime", "next"), ...)

opts_error(constructor = c("errorCondition", "next"), ...)

opts_expression(constructor = c("default"), ...)

opts_CoordCartesian(
constructor = c("coord_cartesian", "next", "environment"),
...

)

opts_CoordFixed(constructor = c("coord_fixed", "next", "environment"), ...)

opts_CoordFlip(constructor = c("coord_flip", "next", "environment"), ...)

opts_CoordMap(constructor = c("coord_map", "next", "environment"), ...)

opts_CoordMunch(constructor = c("coord_munch", "next", "environment"), ...)

https://github.com/cynkra/constructive/issues

other-opts 71

opts_CoordPolar(constructor = c("coord_polar", "next", "environment"), ...)

opts_CoordQuickmap(
constructor = c("coord_quickmap", "next", "environment"),
...

)

opts_CoordSf(constructor = c("coord_sf", "next", "environment"), ...)

opts_CoordTrans(constructor = c("coord_trans", "next", "environment"), ...)

opts_FacetWrap(
constructor = c("facet_wrap", "ggproto", "next", "environment"),
...

)

opts_Scale(constructor = c("default", "next", "environment"), ...)

opts_ScalesList(constructor = c("ScalesList", "next", "list"), ...)

opts_element_blank(constructor = c("element_blank", "next", "list"), ...)

opts_element_grob(constructor = c("element_grob", "next", "list"), ...)

opts_element_line(constructor = c("element_line", "next", "list"), ...)

opts_element_rect(constructor = c("element_rect", "next", "list"), ...)

opts_element_render(constructor = c("element_render", "next", "list"), ...)

opts_element_text(constructor = c("element_text", "next", "list"), ...)

opts_ggproto(constructor = c("default", "next", "environment"), ...)

opts_labels(constructor = c("labs", "next", "list"), ...)

opts_margin(constructor = c("margin", "next", "double"), ...)

opts_rel(constructor = c("rel", "next", "double"), ...)

opts_theme(constructor = c("theme", "next", "list"), ...)

opts_uneval(constructor = c("aes", "next", "list"), ...)

opts_waiver(constructor = c("waiver", "next", "list"), ...)

opts_noquote(constructor = c("noquote", "next"), ...)

72 templates

opts_person(constructor = c("person", "next"), ...)

opts_simpleCondition(constructor = c("simpleCondition", "next"), ...)

opts_simpleError(constructor = c("simpleError", "next"), ...)

opts_simpleMessage(constructor = c("simpleMessage", "next"), ...)

opts_simpleUnit(constructor = c("unit", "next", "double"), ...)

opts_simpleWarning(constructor = c("simpleWarning", "next"), ...)

opts_warning(constructor = c("warningCondition", "next"), ...)

Arguments

constructor String. Method used to construct the object, often the name of a function.

... Additional options used by user defined constructors through the opts object

templates Extend constructive

Description

.cstr_new_class() and .cstr_new_constructor() open new unsaved scripts, optionally com-
mented, that can be used as templates to define new constructors. If the class is already supported
and you want to implement a new constructor, use .cstr_new_constructor(), otherwise use
.cstr_new_class().

Usage

.cstr_new_class(
class = c("CLASS", "PARENT_CLASS"),
constructor = "PKG::CONSTRUCTOR",
commented = FALSE

)

.cstr_new_constructor(
class = c("CLASS", "PARENT_CLASS"),
constructor = "PKG::CONSTRUCTOR",
commented = FALSE

)

templates 73

Arguments

class Class to support, provide the full class() vector.

constructor Name of the constructor, usually the name of the function you can to use to build
the object. If not you might need to adjust the script.

commented Boolean. Whether to include comments in the template.

Details

We suggest the following workflow :

• Call these functions, with commented = TRUE for more guidance

• Save the scripts unchanged in your package

• devtools::document(): this will register the S3 methods

• Try construct() on your new object, it should print a call to your chosen constructor

• Tweak the code, in particular the definition of args

The README of the example extension package ’constructive.example’ guides you through the
process. See also {constructive}’s own code and vignette("extend-constructive") for more
details.

Value

Both function return NULL invisibly and are called for side effects

https://github.com/cynkra/constructive.example

Index

.cstr_apply, 3, 28

.cstr_combine_errors, 5, 28

.cstr_construct, 6, 28

.cstr_new_class, 28

.cstr_new_class (templates), 72

.cstr_new_constructor, 28

.cstr_new_constructor (templates), 72

.cstr_options, 7, 28

.cstr_pipe, 8, 28

.cstr_repair_attributes, 8, 28

.cstr_wrap, 9, 28

.env, 10

.xptr, 10

compare_options, 11
construct, 12
construct_base (construct_dput), 21
construct_base(), 17
construct_clip, 18
construct_clip(), 17
construct_diff, 20
construct_diff(), 17
construct_dput, 21
construct_dput(), 17
construct_dump, 24
construct_dump(), 17
construct_issues, 24
construct_multi (construct), 12
construct_multi(), 25
construct_reprex, 25
construct_reprex(), 17
construct_signature, 26
constructive-global_options, 17
constructive_opts_template

(constructive-global_options),
17

constructive_pretty
(constructive-global_options),
17

constructive_print_mode
(constructive-global_options),
17

defused function call, 5
deparse_call, 26

extend-constructive, 28

Formatting messages with cli, 6

Including contextual information with
error chains, 6

Including function calls in error
messages, 5

local_use_cli(), 6

opts_array, 14, 28
opts_AsIs, 14, 29
opts_atomic, 14, 30, 32, 34, 40, 48, 51, 61
opts_bibentry, 14
opts_bibentry (other-opts), 70
opts_blob, 14, 31
opts_character, 14, 32
opts_citationFooter, 14
opts_citationFooter (other-opts), 70
opts_citationHeader, 14
opts_citationHeader (other-opts), 70
opts_classGeneratorFunction, 14, 33
opts_classPrototypeDef, 14, 33
opts_classRepresentation, 14, 34
opts_complex, 14, 34
opts_constructive_options, 14, 35
opts_CoordCartesian, 14
opts_CoordCartesian (other-opts), 70
opts_CoordFixed, 14
opts_CoordFixed (other-opts), 70
opts_CoordFlip, 14
opts_CoordFlip (other-opts), 70
opts_CoordMap, 14

74

INDEX 75

opts_CoordMap (other-opts), 70
opts_CoordMunch, 14
opts_CoordMunch (other-opts), 70
opts_CoordPolar, 14
opts_CoordPolar (other-opts), 70
opts_CoordQuickmap, 14
opts_CoordQuickmap (other-opts), 70
opts_CoordSf, 14
opts_CoordSf (other-opts), 70
opts_CoordTrans, 14
opts_CoordTrans (other-opts), 70
opts_data.frame, 14, 36
opts_data.table, 15, 37
opts_Date, 15, 38
opts_difftime, 15
opts_difftime (other-opts), 70
opts_dm, 15, 39
opts_dots, 15, 39
opts_double, 15, 40
opts_element_blank, 15
opts_element_blank (other-opts), 70
opts_element_grob, 15
opts_element_grob (other-opts), 70
opts_element_line, 15
opts_element_line (other-opts), 70
opts_element_rect, 15
opts_element_rect (other-opts), 70
opts_element_render, 15
opts_element_render (other-opts), 70
opts_element_text, 15
opts_element_text (other-opts), 70
opts_environment, 15, 41
opts_error, 15
opts_error (other-opts), 70
opts_expression, 15
opts_expression (other-opts), 70
opts_externalptr, 15, 43
opts_FacetWrap, 15
opts_FacetWrap (other-opts), 70
opts_factor, 15, 43
opts_formula, 15, 44
opts_function, 15, 45
opts_ggplot, 15, 46
opts_ggproto, 15
opts_ggproto (other-opts), 70
opts_grouped_df, 15, 46
opts_hexmode, 15, 47
opts_integer, 15, 48

opts_integer64, 15, 48
opts_labels, 15
opts_labels (other-opts), 70
opts_language, 15, 49
opts_Layer, 15, 50
opts_list, 15, 50
opts_logical, 16, 51
opts_margin, 16
opts_margin (other-opts), 70
opts_matrix, 16, 52
opts_mts, 16, 53
opts_noquote, 16
opts_noquote (other-opts), 70
opts_NULL, 16
opts_NULL (other-opts), 70
opts_numeric_version, 16, 54
opts_octmode, 16, 54
opts_ordered, 16, 55
opts_package_version, 16, 56
opts_pairlist, 16, 56
opts_person, 16
opts_person (other-opts), 70
opts_POSIXct, 16, 57
opts_POSIXlt, 16, 58
opts_quosure, 16, 58
opts_quosures, 16, 59
opts_R6, 16, 60
opts_R6ClassGenerator, 16, 61
opts_R_system_version, 16, 63
opts_raw, 16, 61
opts_rel, 16
opts_rel (other-opts), 70
opts_rowwise_df, 16, 62
opts_S4, 16, 64
opts_Scale, 16
opts_Scale (other-opts), 70
opts_ScalesList, 16
opts_ScalesList (other-opts), 70
opts_simpleCondition, 16
opts_simpleCondition (other-opts), 70
opts_simpleError, 16
opts_simpleError (other-opts), 70
opts_simpleMessage, 16
opts_simpleMessage (other-opts), 70
opts_simpleUnit, 16
opts_simpleUnit (other-opts), 70
opts_simpleWarning, 16
opts_simpleWarning (other-opts), 70

76 INDEX

opts_tbl_df, 16, 64
opts_theme, 16
opts_theme (other-opts), 70
opts_ts, 16, 65
opts_uneval, 17
opts_uneval (other-opts), 70
opts_vctrs_list_of, 17, 66
opts_waiver, 17
opts_waiver (other-opts), 70
opts_warning, 17
opts_warning (other-opts), 70
opts_weakref, 17, 66
opts_xts, 17, 67
opts_yearmon, 17, 67
opts_yearqtr, 17, 68
opts_zoo, 17, 69
opts_zooreg, 17, 69
other-opts, 70

templates, 72
trace_back(), 6
try_fetch(), 6
tryCatch(), 6

	.cstr_apply
	.cstr_combine_errors
	.cstr_construct
	.cstr_options
	.cstr_pipe
	.cstr_repair_attributes
	.cstr_wrap
	.env
	.xptr
	compare_options
	construct
	constructive-global_options
	construct_clip
	construct_diff
	construct_dput
	construct_dump
	construct_issues
	construct_reprex
	construct_signature
	deparse_call
	extend-constructive
	opts_array
	opts_AsIs
	opts_atomic
	opts_blob
	opts_character
	opts_classGeneratorFunction
	opts_classPrototypeDef
	opts_classRepresentation
	opts_complex
	opts_constructive_options
	opts_data.frame
	opts_data.table
	opts_Date
	opts_dm
	opts_dots
	opts_double
	opts_environment
	opts_externalptr
	opts_factor
	opts_formula
	opts_function
	opts_ggplot
	opts_grouped_df
	opts_hexmode
	opts_integer
	opts_integer64
	opts_language
	opts_Layer
	opts_list
	opts_logical
	opts_matrix
	opts_mts
	opts_numeric_version
	opts_octmode
	opts_ordered
	opts_package_version
	opts_pairlist
	opts_POSIXct
	opts_POSIXlt
	opts_quosure
	opts_quosures
	opts_R6
	opts_R6ClassGenerator
	opts_raw
	opts_rowwise_df
	opts_R_system_version
	opts_S4
	opts_tbl_df
	opts_ts
	opts_vctrs_list_of
	opts_weakref
	opts_xts
	opts_yearmon
	opts_yearqtr
	opts_zoo
	opts_zooreg
	other-opts
	templates
	Index

